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PROOF OF A CONJECTURED ASYMPTOTIC EXPANSION 
FOR THE APPROXIMATION OF SURFACE INTEGRALS 

P. VERLINDEN AND R. COOLS 

ABSTRACT. Georg introduced a new kind of trapezoidal rule and midpoint rule 
to approximate a surface integral over a curved triangular surface and conjec- 
tured the existence of an asymptotic expansion for this approximation as the 
subdivision of the surface gets finer. The purpose of this paper is to prove the 
conjecture. 

1. INTRODUCTION 

In [1] Georg introduced a new kind of trapezoidal rule and midpoint rule to 
approximate a surface integral over a curved triangular surface and made a con- 
jecture about the asymptotic behavior of the approximation as the subdivision 
of the surface gets finer. Recently, Georg and Tausch [2] found a partial proof 
of this conjecture. Strong numerical evidence supports the validity of the con- 
jecture. The purpose of this paper is to prove the conjecture. Simultaneously 
and independently, Lyness [3] obtained similar results. 

Let a denote the triangle 

:={(u,v)e R2:0<u, 0<v,u+v<1} 

and 
V:= {(, ), (1, 0), (0, 1)} 

its vertices. Let ain and ai denote the affine maps 

a,j(u, v) =:(u>v+J) a j(u,v):=(lU+i, 1 v+i) 

and 
_n := {ai,j :0 < i+ j < n - 1} U {ainj :0 < i ?+ j n -2}. 

Then 
C= U a(a) 

represents the regular subdivision of the triangle a into n2 subtriangles. Let 

-+ R 3: (U, V) ~_+ (X, y, Z) = q(U, V) 
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be the parametrization of a surface S = 0(a) in JR3 and let g(u, v) be a 
function on a. Then we define the operator 95'n as 

( 1 ) (5',ng)(u, v) Z (g o a)(u, v) area[(0 o a)(V)], 

where 

area[(Q o a)(V)] 

:210 ? a)(1, 0) - 
(q 

o a)(0, 0)) x ((0 o a)(0, 1) - (q a a)(O, O))11 

is the area of the triangle with vertices (/ o a) (V) and 11 represents the usual 
Euclidean norm in JR 3. We use the following notation for partial derivatives: 

f(ki \ 1, 2 k 
kJ 04104X2...& 

k 

f(x1, X2, .., XnJ) 

If g is continuous and q is continuously differentiable, we have 

(2) lim (no g)(u, v) = [guv)0 )(u, v) x 0()(u, v)lldudv. 

Hence, if f is a continuous function on S, 

(_5>,+ (f o 0)) (U v) 

converges to the surface integral of f over S 

jfdS= Jjf($(u, v))11$(l')(u, v) x q($0')(u, v)lldudv. 

To approximate this surface integral, Georg and Tausch considered the modified 
trapezoidal rule 

(3 ((_5>,n (f o /0)) (oS ) + (n (f o 0)) (1, ) + nR (f o 0)(0 1)) (3) 1) 

and the modified midpoint rule 

(4) ~~~~~~~~(_5>, (f o 0)) (,3 

If we transformed the surface integral into an integral over the triangle a and 
approximated the latter integral numerically, we would have to evaluate the 
partial derivatives of the map 0$, which is only defined implicitly in applications 
of boundary element methods [1]. The advantage of the rules (3) and (4) is that 
they avoid the evaluation of these partial derivatives. Georg conjectured that 
these rules admit an asymptotic expansion in even powers of 1 under certain 
regularity conditions on f and q. We prove this conjecture in Theorem 1. 

2. PROOF OF THE ASYMPTOTIC EXPANSION 

Definition 1. Suppose Q is an open subset of 1R n and Q its closure. Then we 
say that a function f is smooth on Q if the partial derivatives of all orders of 
f exist and are continuous on Q and we say that f is smooth on Q if f is 
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smooth on Q and if the partial derivatives of all orders of f have a continuous 
extension on Q . 

Lemma 1. Suppose f(x, y) is a smooth function on the square [0, 1]2. Then 
we have the asymptotic expansion 

IZZf(n 2 I+i 1+i) f 
t 2 + 

n2EEtV ~n 'n) 

kE. E nk+1 oj f(k 1)(x, y)dxdy Bk (-2) as n 
k= 10 __njo 

where Bm(t) represents the Bernoulli polynomial of degree m in t. 

This is a well-known generalization of the classical Euler-Maclaurin summa- 
tion formula (cf. [4]). Observe that Bm(') = 0 if m is odd. Consequently, 
we have an asymptotic expansion in even powers of I The following lemma 
combines this asymptotic expansion with a Taylor expansion. 

Lemma 2. Suppose the function f(x, y, h) is smooth on 

Q2= {(x,y, h)e 7R3 :0< h < e, 
h 

<x < 1- h, 
h 

<y < 1_h} 
2 2'52 

where e > 0. Then we have the asymptotic expansion 

1 n-in-i I + i +j 

n2 = n n nJ 

____ r01 I Bk ( I )B ( ') 
E ZZnk+l+m] f(k l m)(x y, o)dxdy k!21! !2m as! n o. 

k=0 1=0 M=0 J 

Remark. If f(x, y, h) is smooth on 

{(x, y, h) : (x, y, h) E Q or (x, y, -h) E Q}, 

and if f is even with respect to h, 

f(x, y, -h) = f(x, y, h), 

then we have an asymptotic expansion in even powers of 1. 

Proof ofLemma 2. Let M be an arbitrary positive integer. Expanding f(x, y, h) 
in its Taylor series about h = 0, we have 

M 

(5) f(x,. y,5 h) = (?' ? M) (X , YX 50)- + fm(x 5Y,5 h). 
m=0 

The remainder fM(x, y, h) is uniformly of order 6(hM+l): 

(6) V(x, y, h) E Q: |fM(x, y, h)| < Khm+l, 
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where 

K= max 1 f(O(O?M+i)(x,y, h) 
(x, y, h)EO~ (M + 1)! 

Using (5), we have 

I nIn- (2 +i +j I) 

M n-1 n-i I +i 
I 

.j 

(7) =ZI;-2ZZf(O (0'O'm) 2m ___ __ n n m! nm 
m=0 i=0 j=0 

n i=o j=0 n n n) 

By Lemma 1, we have 

1 n in 1(OOm) _ ___ 2 
n n 0 

i=O j=0 
m 

(8) fk+l+m j (yO)dxdy Bk(2)B(2) 
k+l+m<Mnk!Pm 

+~ 
(nM+I) 

and by (6) we have 

(9) _2_ <_ 
(9) ~~~n2l I: f( n 'n 'n) nM+I' 

Substituting (8) and (9) in (7), we have 

1n- n- +i I +j 

ni=0j=0 n n nJ 
fI I Pi(,lm) (Ox dd Bk ( I)B1 ( ) 

L.E k+l+y O)dxdy k21! !2 
k+l+m<Mnk!Pm 

(nM+ I ) 
As M can be chosen arbitrarily large, the lemma is proved. o 

Lemma 3. Suppose c$: i- R 3 is a smooth map such that 

(10) V(u, V) E a: q$(i0O)(u V) x q(O i)(U, V) $ (0,0 , 0). 
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Then there exists an c > 0 such that the function 

A(u, v, h) :=h-2area[q({Vo(u, v, h), V1(u, v, h), V2(u, v, h)})], 

where 

hi hi+<-h} 

Vo(u, v,ih)i= iu- r tha, v- i n 

V(u,uv,h)= aun +Vh(uvv_h 

V2(Ux (,h)(= (u- h) )qV(+ v, h 

is smooth on 

Q=N(u,v,h)E u :IhlZ< e -h <u 2 < va u+v<1 hls 

The inequalities in the definition of Q2 ensure that 0 is defined at Vo (u, v, h), 
vj u, v, h) and b V2(u, v, (. 

Proof of Let ma 3. Let 

N(u, v, h) = ((Vl(u, v, h))u- )(Vo(u, v, h))) 
X (u(V2(u, V, h)) - (Vo(u, v, h))), 

Then N(u, v, h) depends smoothly onr (u, v, h). Expanding N(u, v, h) in 
a Taylor series about h = O, we have uniformly 

00 

N(u, v, h) r, :Cj(U, v)hj+2 as h O- , 
j=o 

where 

co(u, v) = 0(1X0)(u, v) x 0(',')(u, v). 

The Taylor expansion of N(k, 1 m) (U, v, h) is obtained by termwise differenti- 
ation of this expansion 

N (k, 1 m) (U ,v, h) C, 1') 
(U, Iv) d has h -- O. 

Let 

M(u, v, h) = h -2 N(u, v, h). 

Then, applying the Leibniz rule for differentiation of a product, and using the 
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Taylor expansions of the partial derivatives of N(u, v, h), we have 

m m\/dih-2 
M(k,,m) (U, v, h) = S () dh1 ) N(k,l,m-i)(U v, h) 

z=O 
dh 

f (i) (dih2) c5k' ) (u, v) (dm-ih2+j) ash 0 

( 0 v)dh' )C(k-1h ) as h 0 

Zck l)(u,V)dhm as hdhO 

00 

rN0E 
c( k l(,v ( 1) j-m+lh- as h 0 

j=m 

uniformly. Hence, M(u, v, h) admits a smooth extension as h - 0. As 

M(u, v, 0) = q(1 0)(u, v) x q(0 ')(u, v), 

we have by (10) that 

V(u, v, h) E Q: M(u, v, h) # (0, 0, 0), 

provided c is chosen sufficiently small. As a result, 

A(u, v, h) = 2IIM(u, v, h)I 

is smooth on Q. n 

We now state the main result. 

Theorem 1. Suppose q is as in Lemma 3 and g(u, v) is a smooth function on 
a. Then for (u, v) c a the following asymptotic expansion holds: 

(11 l) (t577g)(N V) Eck(u,v n ) as n - oo, 
k=0 

where ck(u, v) is a polynomial of total degree < 2k in u and v. 

Proof We first prove the theorem under the additional assumption 

(12) 34E,> 0: g(u, v) =O if u +v> I- el. 

According to Lemma 3, there exists an 62 > 0 such that A(s, t, h) is smooth 
on 

Q22= (s, t, h) E 1R3: lhl 2 h< , 
hl s + t < 1 - lhl 
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Choose 0 < < 2 min{El, C2} and let 

(s, t, h)lE R 3:ihi <e, -h<s< I _ l - 2lhl 
2 -- 2'2 -- 2 

For each (s, t, h) E Q, at least one of the following conditions is satisfied: 

(i) s+t+ ihl < l. 

If this condition is satisfied, we put 

F(s, t, h) := g(s + h(u - ), t + h(v - 1))A(s, t, h). 

(ii) s +t - ih > I - El 

If this condition is satisfied, we put F(s, t, h) := 0. 

The conditions are not mutually exclusive, but by (12) both expressions for 
F(s, t, h) coincide if both conditions are satisfied. The function F(s, t, h) is 
consequently well defined and smooth on Q. If n > e-, we have 

I (i+ j+~l 
(g o a j)(u, v) area[(q o a7j)(V)] = nr( 

1 (+ j+~ l' 
(go 7j)(u, v) area[(q oa j)(V)] = - n n')F 

Inserting this in (1), we have 

(y4ng)(U, V)= 12 E ri 2 i2 

n2 +jn_ n n n 'n 1 1~~~~ 

nO<i+j<n-2 

Introducing additional zero terms, we have 

(2+ 
)(u,v) 

=n2E IF n 'n 'n ) n 'n ' n) 
i=O j=0 

As the function 

F(s, t, h) + J(s, t, -h) 

is even in h and smooth for sufficiently small h , the asymptotic expansion ( 11) 
follows from Lemma 2 under the assumption (12). As (0, 0, m) (s, t, 0) is a 
polynomial of total degree < m in u and v with coefficients depending on 
s and t, it follows that Ck(u, v) is a polynomial of total degree < 2k in u 
and v. 
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Now suppose the assumption (12) is not satisfied. There exists a partition of 
unity (cf. [5, Theorem 6.20, p. 147]) 

yo(u, v) + VI1(U, V) + y2(U, V)-1, 

where V'0, V1, y/2 are nonnegative smooth functions such that 

y1O'(u,v)=O if u+v>3 

yi1(u,v)=O if u<I 

yi2(u,v)=0 if v<- 4. 

We have 

y S,n g = 5?n (,0og) + yn (, g) + yn(q/2g). 
Let 

go(u, v) (q,og)(u, v), 
gi(u, v) (g1g)(1 -u-v v), 

Then 

(y",ng)(u, v) = (5,ngo)(u, v) + (5'yng,)(I u - v, v) 

+ 59, 2) (U , 1-UV) 

and the function gj(u, v), jI = 1, 2, 3, is smooth on a and 

gj(u,v)=0 if u+vv>. 

Hence, according to the first part of the proof, ngj admits an asymptotic 

expansion in even powers of . The asymptotic expansion for Yng can thus 
be obtained as the sum of the asymptotic expansions of the terms of the right- 
hand side of (13). ca 

Suppose 0 is as in Theorem 1 and f (x, y, z) is a smooth function on an 
open set containing S = q(a) . Then g(u, v) = (f O q$)(u, v) is smooth on a, 
and by Theorem 1 

Rxn(f a q) 

admits an asymptotic expansion in even powers of 1 . By (2) the dominant 
term of this expansion is the surface integral of f over S. The modified 
trapezoidal rule (3) and the modified midpoint rule (4) thus have an asymptotic 
error expansion in even powers of 1 . 
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